
CS636: Memory Consistency
Models

Swarnendu Biswas

Semester 2018-2019-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Correctness of Shared-memory Programs

CS636 Swarnendu Biswas 2

“To write correct and efficient shared memory programs,
programmers need a precise notion of how memory behaves with
respect to read and write operations from multiple processors”

S. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorials. WRL Research Report, 1995.

Busy-Wait Paradigm

X = new Object();
done = true;

Thread T1

while (!done) {}
if (X != null)
X.compute();

Thread T2

Object X = null;
boolean done= false;

What Value Can a Read Return?

Core C1

S1: store X, 10

S2: store done, 1

Core C2

L1: load r1, done

B1: if (r1 != 1) goto L1

L2: load r2, X

X = 0
done = 0

Reordering of Accesses by Hardware

Store-store

Load-load

Load-store

Store-load

CS636 Swarnendu Biswas 8

Different
addresses!

Reordering of Accesses by Hardware

Store-store

Load-load

Load-store

Store-load

CS636 Swarnendu Biswas 9

Different
addresses!

Correct in a single-threaded context

Non-trivial in a multithreaded context

What values can a load return?

Return the “last” write

Uniprocessor: program order

Multiprocessor: ?

CS636 Swarnendu Biswas 10

Memory Consistency Model

Set of rules that govern how systems process memory operation
requests from multiple processors

• Determines the order in which memory operations appear to execute

Specifies the allowed behaviors of multithreaded programs executing
with shared memory

• Both at the hardware-level and at the programming-language-level

• There can be multiple correct behaviors

CS636 Swarnendu Biswas 11

Importance of Memory Consistency Models

Determines what optimizations are correct

Contract between the programmer and the hardware

Influences ease of programming and program
performance

Impacts program portability

CS636 Swarnendu Biswas 12

Dekker’s Algorithm

Core C1

S1: store flag1, 1

L1: load r1, flag2

Core C2

S2: store flag2, 1

L2: load r2, flag1

flag1 = 0
flag2 = 0

Can both r1 and r2 be set to zero?

Issues with Memory Consistency

Visibility

• When does a value update
become visible to others?

Ordering

• When can operations of any
given thread appear out of order
to another thread?

CS636 Swarnendu Biswas 14

Sequential Consistency

CS636 Swarnendu Biswas 16

A multiprocessor system is sequentially consistent if the
result of any execution is the same as if the operations of all
processors were executed in some sequential order, and the
operations of each individual processor appear in the order
specified by the program.

Leslie Lamport

Sequential Consistency (SC)

Uniprocessor

• operations executed in order specified by the program

Multiprocessor

• all operations executed in order, and the operations of each
individual core appear in program order

CS636 Swarnendu Biswas 17

Uniprocessor Memory Model

• Memory operations occur in program order
• Only maintain data and control dependences

• Read from memory returns the value from the last write in program
order

• Compiler optimizations preserve these semantics

CS636 Swarnendu Biswas 18

Interleavings with SC

CS636 Swarnendu Biswas 19

Interleavings with SC

CS636 Swarnendu Biswas 20

SC Formalism

Every load gets its value from the last store before it
(in global memory order) to the same address

CS636 Swarnendu Biswas 21

SC Rules

Suppose we
have two

addresses a
and b

• a == b or a!= b

Constraints

• if L(a) <p L(b) ⇒ L(a) <m L(b)

• If L(a) <p S(b) ⇒ L(a) <m S(b)

• If S(a) <p S(b) ⇒ S(a) <m S(b)

• If S(a) <p L(b) ⇒ S(a) <m L(b)

CS636 Swarnendu Biswas 22

Challenges in Implementing SC

• Is preserving program order on a per-location basis sufficient?

CS636 Swarnendu Biswas 23

Need for Write Atomicity

CS636 Swarnendu Biswas 24

Core C1

A = 1

Core C2

if (A == 1)
B = 1

Core C3

if (B == 1)
tmp = A

ti
m

e

Write Buffers with Bypassing

CS636 Swarnendu Biswas 25

Core 1 Core 2

S1: store flag1, 1
L1: load r1, flag2

S2: store flag2, 1
L2: load r2, flag1

flag1 = 0
flag2 = 0

shared bus

Core 1

write/store
buffer

Core 2

write/store
buffer

1. store flag1 2. store flag2

3. load flag2 4. load flag1

SC in Architecture with Caches

• Replication of data requires a cache coherence protocol
• Several definitions of cache coherence protocols exist

• Propagating new values to multiple other caches is non-atomic

CS636 Swarnendu Biswas 26

Serialization of Writes

CS636 Swarnendu Biswas 27

Core 1 Core 2

A = 1
B = 1

A = 2
C = 1

Core 3

while (B != 1) {}
while (C != 1) {}
tmp1 = A

Core 4

while (B != 1) {}
while (C != 1) {}
tmp2 = A

Serialization of Writes

CS636 Swarnendu Biswas 28

Core 1 Core 2

A = 1
B = 1

A = 2
C = 1

Core 3

while (B != 1) {}
while (C != 1) {}
tmp1 = A

Core 4

while (B != 1) {}
while (C != 1) {}
tmp2 = A

Cache coherence must serialize writes to the same memory location

Writes to the same memory location must be seen in the same order by all

Cache Coherence

Single writer multiple readers (SWMR)

Memory updates are passed correctly, cached copies always contain the most
recent data

Virtually a synonym for SC, but for a single memory location

Alternate definition based on relaxed ordering

• A write is eventually made visible to all processors

• Writes to the same location appear to be seen in the same order by all processors (serialization)

• SC - *all*

CS636 Swarnendu Biswas 32

Memory Consistency vs Cache Coherence

Memory Consistency

• Defines shared memory behavior

• Related to all shared-memory locations

• Policy on when new value is propagated to
other cores

• Memory consistency implementations can
use cache coherence as a “black box”

Cache Coherence

• Does not define shared memory behavior

• Specific to a single shared-memory location

• Propagate new value to other cached copies
• Invalidation-based or update-based

CS636 Swarnendu Biswas 33

End-to-end SC

Simple memory model that can be implemented both
in hardware and in languages

Performance can take a hit

• Naive hardware

• Maintain program order - expensive for a write

CS636 Swarnendu Biswas 34

SC-Preserving Optimizations

• Redundant load

• Forwarded load

• Dead store

• Redundant store

t = X; u = X; t = X; u = t;

X = t; u = X; X = t; u = t;

X = t; X = u; X = u;

t = X; X = t; t = X;

CS636 Swarnendu Biswas 35

Optimizations Forbidden in SC

• Loop invariant code motion

• Common sub-expression elimination

• …

CS636 Swarnendu Biswas 36

Original Optimized

L1: t = X*2
L2: u = Y
L3: v = X*2

L1: t = X*2
L2: u = Y
O3: v = t

Optimizations Forbidden in SC

• Loop invariant code motion

• Common sub-expression elimination

• …

CS636 Swarnendu Biswas 37

Original Optimized

L1: t = X*2
L2: u = Y
L3: v = X*2

Concurrent

C1: X = 1
C2: Y = 1

L1: t = X*2
L2: u = Y
O3: v = t

D. Marino et al. A Case for an SC-Preserving Compiler. PLDI’11.

Optimizations Forbidden in SC

CS636 Swarnendu Biswas 38

Original Optimized

L1: X = 1
L2: P = Q
L3: t = X

L1: X = 1
L2: P = Q
L3: t = 1

L1: X = 1
L2: P = Q
L3: X = 2

L1: ;
L2: P = Q
L3: X = 2

L1: t = X
L2: P = Q
L3: X = t

L1: t = X
L2: P = Q
L3: ;

Constant/copy
propagation

Dead store

Redundant store

Implementing SC with Compiler Support

• Idea: Implement a compiler pass (e.g., LLVM) to deal with non-SC
preserving optimizations

CS636 Swarnendu Biswas 39

L1: t = X*2
L2: u = Y
L3: v = X*2

L1: t = X*2
L2: u = Y
L3: v = t
C3: if (X modified since L1)
L3: v = X*2

D. Marino et al. A Case for an SC-Preserving Compiler. PLDI’11.

SC Semantics

• SC does not guarantee data race freedom

• Not a strong memory model

Program semantics

CS636 Swarnendu Biswas 40

a++; buffer[index]++;

Questions

• How would you implement an RMW instruction with SC?

• Are memory models only relevant in systems with support for
caches?

• Is memory consistency not needed in presence of cache coherence?

• Do memory models only impact hardware design?

CS636 Swarnendu Biswas 41

Hardware Memory Models

CS636 Swarnendu Biswas 42

Characterizing Hardware Memory Models

• Store → Load, Store → Store, …

• Applicable to pairs of operations with different
addresses

Relax program order

• Read other core’s write early

• Applicable to only cache-based systems
Relax write atomicity

• Read own write early
Relax both program order

and write atomicity

CS636 Swarnendu Biswas 43

Possible Interleavings Under SC and TSO

CS636 Swarnendu Biswas 44

Total Store Order

Allows reordering stores to loads

Can read own write early, not other’s writes

Conjecture: widely-used x86 memory model is
equivalent to TSO

CS636 Swarnendu Biswas 45

TSO Rules

• If L(a) <p L(b) ⇒ L(a) <m L(b)

• If L(a) <p S(b) ⇒ L(a) <m S(b)

• If S(a) <p S(b) ⇒ S(a) <m S(b)

• If S(a) <p L(b) ⇒ S(a) <m L(b) /* Enables FIFO Write Buffer */

a == b or a != b

Every load gets its value from the last store before it
to the same address

CS636 Swarnendu Biswas 47

Support for FENCE Operations in TSO

If L(a) <p FENCE ⇒ L(a) <m FENCE

If S(a) <p FENCE ⇒ S(a) <m FENCE

If FENCE <p FENCE ⇒ FENCE <m FENCE

If FENCE <p L(a) ⇒ FENCE <m L(a)

If FENCE <p S(a) ⇒ FENCE <m S(a)

If S(a) <p FENCE ⇒ S(a) <m FENCE

If FENCE <p L(a) ⇒ FENCE <m L(a)

CS636 Swarnendu Biswas 48

Possible Outcomes with TSO

CS636 Swarnendu Biswas 49

Possible Outcomes with TSO

CS636 Swarnendu Biswas 50

RMW in TSO

Load of a RMW cannot be performed until earlier stores are
performed (i.e., exited the write buffer)

• Effectively drains the write buffer

Load requires read–write coherence permissions, not just read
permissions

To guarantee atomicity, the cache controller may not relinquish
coherence permission to the block between the load and the store

CS636 Swarnendu Biswas 51

Relationship between SC and TSO

Correct? Correct?

CS636 Swarnendu Biswas 52

SC

TSO

TSO

SC

Partial Store Order (PSO)

• Allows reordering of store to loads and stores to stores

• Writes to different locations from the same processor can be
pipelined or overlapped and are allowed to reach memory or other
cached copies out of program order

• Can read own write early, not other’s writes

CS636 Swarnendu Biswas 53

Opportunities to Reorder Memory Operations

CS636 Swarnendu Biswas 54

Reorder Operations Within a Synchronization
Block

CS636 Swarnendu Biswas 55

Optimization Opportunities

Non-FIFO coalescing write buffer

Support non-blocking reads

• Hide latency of reads

• Use lockup-free caches and speculative execution

Simpler support for speculation

• Need not compare addresses of loads to coherence requests

• For SC, need support to check whether the speculation is correct

CS636 Swarnendu Biswas 56

Relaxed Consistency Rules

If L(a) <p FENCE ⇒ L(a) <m FENCE

If S(a) <p FENCE ⇒ S(a) <m FENCE

If FENCE <p FENCE ⇒ FENCE <m FENCE

If FENCE <p L(a) ⇒ FENCE <m L(a)

If FENCE <p S(a) ⇒ FENCE <m S(a)

CS636 Swarnendu Biswas 57

Relaxed Consistency Rules

Maintain TSO rules for ordering two accesses to the same
address only

• If L(a) <p L′(a) ⇒ L(a) <m L′(a)

• If L(a) <p S(a) ⇒ L(a) <m S(a)

• If S(a) <p S′(a) ⇒ S(a) <m S′(a)

Every load gets its value from the last store before it to the
same address

CS636 Swarnendu Biswas 58

Correct Implementation under Relaxed
Consistency

CS636 Swarnendu Biswas 59

Is this code
now correct?

Correct Implementation under Relaxed
Consistency

CS636 Swarnendu Biswas 60

Relaxed Consistency Memory Models

Weak ordering

• Distinguishes between data and synchronization operations

• A synchronization operation is not issued until all previous
operations are complete

• No operations are issued until the previous synchronization
operation completes

CS636 Swarnendu Biswas 61

Correct Implementation under Relaxed
Consistency

CS636 Swarnendu Biswas 62

Which fences are needed to ensure
correct ordering and visibility

between C1 and C2?

Relaxed Consistency Memory Models

Release consistency

• Distinguishes between acquire and release synchronization
operations

• RCsc - maintains SC between synchronization operations

• Acquire → all, all → release, and sync → sync

CS636 Swarnendu Biswas 63

Relaxed Consistency Memory Models

Why should we
use them? Performance

Why should we
not use them? Complexity

CS636 Swarnendu Biswas 64

Hardware Memory Models: One Slide
Summary

CS636 Swarnendu Biswas 65

Desirable Properties of a Memory Model

Hard to
satisfy all

three
properties

• Programmability

• Performance

• Portability Pros
• Intuitive

• Serializability of instructions

Cons

• No atomicity of regions

• Inhibits compiler
transformations

• Almost all recent
architectures violate SC

CS636 Swarnendu Biswas 66

Think of SC

Programming Language
Memory Models

CS636 Swarnendu Biswas 67

Data-Race-Free-0 (DRF0) Model

• Conceptually similar to Weak Ordering

• Assumes no data races
• No guarantees for racy programs

• Allows many optimizations in the compiler and hardware

Language Memory Models

Developed much later

• Recent standardizations are largely driven by languages

Most are based on the DRF0 model

Why do we need one?

• Isn’t the hardware memory model enough?

CS636 Swarnendu Biswas 69

C++ Memory Model

• Adaptation of the DRFO memory model

• SC for data race free programs

• C/C++ simply ignore data races
• No safety guarantees in the language

CS636 Swarnendu Biswas 70

Catch-Fire Semantics in C++

X* x = NULL;
bool done= false;

x = new X();
done = true;

if (done) {
x->func();

}

Thread T1 Thread T2

Catch-Fire Semantics in C++

X* x = NULL;
bool done= false;

x = new X();
done = true;

if (done) {
x->func();

}

Thread T1 Thread T2

Memory Operations in C++

Synchronization
• Lock, unlock, atomic load, atomic store, atomic

RMW

Data • Load, Store

CS636 Swarnendu Biswas 73

Reordering of Memory Operations in C++

Compiler
reordering
allowed for
M1 and M2

M1 is a data operation and M2 is a read synchronization operation

M1 is write synchronization and M2 is data

M1 and M2 are both data with no synchronization between them

M1 is data and M2 is the write of a lock operation

M1 is unlock and M2 is either a read or write of a lock

CS636 Swarnendu Biswas 74

Writing Correct C++ Code

• Mutual exclusion of critical code blocks

• Mutex provides inter-thread synchronization
• Unlock() synchronizes with calls to lock() on the same mutex object

CS636 Swarnendu Biswas 75

std::mutex mtx;
{

mtx.lock();
// access shared data here
mtx.unlock();

}

Synchronize Using Locks

CS636 Swarnendu Biswas 76

std::mutex mtx;
bool dataReady = false;

{
mtx.lock();
prepareData();
dataReady = true;
mtx.unlock();

}

{
mtx.lock();
if (dataReady) {

consumeData();
}
mtx.unlock();

}

Synchronize Using Locks

CS636 Swarnendu Biswas 77

std::mutex mtx;
bool dataReady = false;

{
mtx.lock();
prepareData();
dataReady = true;
mtx.unlock();

}

bool b;
{
mtx.lock();
b = dataReady;
mtx.unlock();

}
if (b) {

consumeData();
}

Using Atomics from C++11

• “Data race free” by definition
• E.g., std::atomic<int>

• A store synchronizes with
operations that load the stored
value

• Similar to volatile in Java

• C++ volatile is different!
• Does not establish inter-thread

synchronization, not atomic

• Can be part of a data race

CS636 Swarnendu Biswas 78

std::mutex mtx;
std::atomic<bool> ready(false);

prepareData();
ready.store(true);

if (ready.load()) {
consumeData();

}

atm_var1.store(atm_var2.load());

reg_var1 = reg_var2;

Visibility and Ordering

Visibility

• When are the effects of one
thread visible to another?

Ordering

• When can operations of any
given thread appear out of order
to another thread?

CS636 Swarnendu Biswas 79

Ensuring Visibility

• Writer thread releases a lock
• Flushes all writes from the thread’s working memory

• Reader thread acquires a lock
• Forces a (re)load of the values of the affected variables

• Atomic (C++)/volatile (Java)
• Values written are made visible immediately before any further memory

operations
• Readers reload the value upon each access

• Thread join
• Parent thread is guaranteed to see the effects made by the child thread

CS636 Swarnendu Biswas 80

Memory Order of Atomics

• Specifies how regular, non-atomic
memory accesses are to be ordered
around an atomic operation

• Default is sequential consistency

atomic.h

enum memory_order {

memory_order_relaxed,

memory_order_consume,

memory_order_acquire,

memory_order_release,

memory_order_acq_rel,

memory_order_seq_cst

};

CS636 Swarnendu Biswas 81

Memory Model Synchronization Modes

• Producer thread creates data

• Producer thread stores to an
atomic

• Consumer threads read from the
atomic

• When the expected value is
seen, data from the producer
thread is complete and visible to
the consumer thread

CS636 Swarnendu Biswas 82

The different memory model modes indicate how strong this data-
sharing bond is between threads

http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync

Memory Model Modes

• memory_order_seq_cst

CS636 Swarnendu Biswas 83

x = 0;
y = 0;

y = 1;
x.store(2);

if (x.load() == 2)
assert (y == 1)

Can this assert
fail?

Memory Model Modes

• memory_order_seq_cst

CS636 Swarnendu Biswas 85

x = 0;
y = 0;

y.store(20);
x.store(10);

if (x.load() == 10)
assert (y.load() == 20);
y.store(10);

if (y.load() == 10)
assert (x.load() == 10)

Can these
asserts fail?

Memory Model Modes

• memory_order_relaxed: no happens-before edges

CS636 Swarnendu Biswas 87

x = 0;
y = 0;

y.store(20, memory_order_relaxed);
x.store(10, memory_order_relaxed);

if (x.load(memory_order_relaxed) == 10)
assert (y.load(memory_order_relaxed) == 20);
y.store(30, memory_order_relaxed);

if (y.load(memory_order_relaxed) == 30)
assert (x.load(memory_order_relaxed) == 10)

Can these asserts fail?

Memory Model Modes

• memory_order_relaxed

CS636 Swarnendu Biswas 89

x = 0;
y = 0;

x.store(10, memory_order_relaxed);
x.store(20, memory_order_relaxed);

y = x.load(memory_order_relaxed);
z = x.load(memory_order_relaxed);
assert (y < z);

Can this assert
fail?

Memory Model Modes

• memory_order_acquire and memory_order_release

CS636 Swarnendu Biswas 91

x = 0;
y = 0;

y.store(20, memory_order_release);

x.store(10, memory_order_release);

assert (y.load(memory_order_acquire) == 20 && x.load(memory_order_acquire) == 0);

assert (y.load(memory_order_acquire) == 0 && x.load(memory_order_acquire) == 10);

Can these asserts
pass?

Memory Model Modes

• memory_order_acquire and memory_order_release

CS636 Swarnendu Biswas 93

x = 0;
y = 0;

y = 20;
x.store(10, memory_order_release);

if (x.load(memory_order_acquire) == 10)
assert (y == 20);

Can this assert
fail?

Memory Model Modes

• memory_order_consume

CS636 Swarnendu Biswas 95

x = 0;
y = 0;

n = 1;
m = 1;
p.store(&n, memory_order_release);

t = p.load(memory_order_acquire);
assert (*t == 1 && m == 1);

t = p.load(memory_order_consume);
assert (*t == 1 && m == 1);

Can these
asserts fail?

Happens-Before Memory Model (HBMM)

• Read operation a = rd(t, x, v) may return the value written by
any write operation b = wr(t, x, v) provided
1. b does not happen after a, i.e., b ≺ 𝐻𝐵 a or b ≍ a
2. there is no intervening write c to x where b ≺ 𝐻𝐵 c ≺ 𝐻𝐵 a

CS636 Swarnendu Biswas 97

HBMM

CS636 Swarnendu Biswas 98

y = 1;
r1 = x;

x = 1;
r2 = y;

x = 0;
y = 0;

assert r1 != 0 || r2 != 0

r1 = x;
y = 1;

r2 = y;
x = 1;

assert r1 == 0 || r2 == 0 Can these
asserts fail?

HBMM

CS636 Swarnendu Biswas 99

r = x;
y = 1;
assert (r == 0);

while (y == 0) {}
x = 1;

x = 0;
y = 0;

Will the assertion
pass or fail?

HBMM

CS636 Swarnendu Biswas 100

x = 10; if (x != 0)
r2 = r1 / x;

x = 0;

Can anything go
wrong?

HBMM

• Potential for out-of-thin-air values

CS636 Swarnendu Biswas 101

x = y; y = x;

x = 0;
y = 0;

HBMM

• DRF0 is not strictly stronger than HBMM

DRF0 allows arbitrary behavior for racy
executions

• HBMM is not strictly stronger than DRF0

HBMM does not guarantee SC for DRF programs

CS636 Swarnendu Biswas 102

DRF0 vs HBMM

CS636 Swarnendu Biswas 103

r1 = x;
if (r1 == 1)

y = 1;

r2 = y;
if (r2 == 1)
x = 1;

x = 0;
y = 0;

assert r1 == 0 && r2 == 0

Is there a data race
on x and y?

Java Memory Model (JMM)

• First high-level language to incorporate a memory model

• Provides memory- and type-safety, so has to define some semantics
for data races

CS636 Swarnendu Biswas 104

Outcomes Possible with JMM

• Racy Initialization

CS636 Swarnendu Biswas 105

obj = new Circle(); if (obj != null)
obj.draw()

obj = null
x = 0;
y = 0;

Can there be a
NPE with JMM?

Outcomes Possible with Java

CS636 Swarnendu Biswas 106

x = 0;
y = 0;

r1 = x;
y = 1;

r2 = y;
x = 1;

assert r1 == 0 || r2 == 0

y = 1;
r1 = x;

x = 1;
r2 = y;

assert r1 != 0 || r2 != 0

assert r1 == 0 || r2 == 0

assert r1 != 0 || r2 != 0

Can these
asserts fail?

Outcomes Not Possible with Java

CS636 Swarnendu Biswas 107

r1 = x;
y = r1;

r2 = y;
x = r2;

x = 0;
y = 0;

assert r1 != 42

JMM is strictly stronger than DRF0 and HBMM

JVMs do not comply with the JMM!!!

CS636 Swarnendu Biswas 108

r1 = x;
y = r1;

r2 = y;
if (r2 == 1) {

r3 = y;
x = r3;

} else {
x = 1;

}

x = 0;
y = 0;

assert r2 == 0 Can this assert
fail under HBMM

and JMM?

Lessons Learnt

SC for DRF is the minimum baseline

• Make sure the program is free of data races

• System guarantees SC execution

Specifying semantics for racy programs is hard

Simple optimizations may introduce unintended consequences

CS636 Swarnendu Biswas 109

References

• S. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorials. WRL Research Report, 1995.

• D. Sorin et al. A Primer on Memory Consistency and Cache Coherence

• D. Marino et al. A Case for an SC-Preserving Compiler. PLDI 2011.

• C. Flanagan and S. Freund. Adversarial Memory for Detecting Destructive Races. PLDI 2010.

• M. Cao et al. Prescient Memory: Exposing Weak Memory Model Behavior by Looking into the Future. ISMM
2016.

CS636 Swarnendu Biswas 110

