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Correctness of Shared-memory Programs
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“To write correct and efficient shared memory programs, 
programmers need a precise notion of how memory behaves with 
respect to read and write operations from multiple processors”

S. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorials. WRL Research Report, 1995.



Busy-Wait Paradigm

X = new Object();
done = true;

Thread T1

while (!done) {}
if (X != null)
X.compute();

Thread T2

Object X = null;
boolean done= false;



What Value Can a Read Return?

Core C1

S1: store X, 10

S2: store done, 1

Core C2

L1: load r1, done

B1: if (r1 != 1) goto L1

L2: load r2, X

X = 0
done = 0



Reordering of Accesses by Hardware

Store-store

Load-load

Load-store

Store-load
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Different 
addresses!



Reordering of Accesses by Hardware

Store-store

Load-load

Load-store

Store-load
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Different 
addresses!

Correct in a single-threaded context

Non-trivial in a multithreaded context



What values can a load return? 

Return the “last” write

Uniprocessor: program order

Multiprocessor: ?

CS636 Swarnendu Biswas 10



Memory Consistency Model

Set of rules that govern how systems process memory operation 
requests from multiple processors

• Determines the order in which memory operations appear to execute

Specifies the allowed behaviors  of multithreaded programs executing 
with shared memory

• Both at the hardware-level and at the programming-language-level

• There can be multiple correct behaviors
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Importance of Memory Consistency Models

Determines what optimizations are correct

Contract between the programmer and the hardware

Influences ease of programming and program 
performance

Impacts program portability
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Dekker’s Algorithm

Core C1

S1: store flag1, 1

L1: load r1, flag2

Core C2

S2: store flag2, 1

L2: load r2, flag1

flag1 = 0
flag2 = 0

Can both r1 and r2 be set to zero?



Issues with Memory Consistency

Visibility

• When does a value update 
become visible to others?

Ordering

• When can operations of any 
given thread appear out of order 
to another thread?
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Sequential Consistency
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A multiprocessor system is sequentially consistent if the
result of any execution is the same as if the operations of all
processors were executed in some sequential order, and the
operations of each individual processor appear in the order
specified by the program.

Leslie Lamport



Sequential Consistency (SC)

Uniprocessor 

• operations executed in order specified by the program

Multiprocessor 

• all operations executed in order, and the operations of each 
individual core appear in program order
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Uniprocessor Memory Model

• Memory operations occur in program order
• Only maintain data and control dependences 

• Read from memory returns the value from the last write in program 
order

• Compiler optimizations preserve these semantics
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Interleavings with SC
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Interleavings with SC
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SC Formalism

Every load gets its value from the last store before it 
(in global memory order) to the same address
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SC Rules

Suppose we 
have two 

addresses a 
and b

• a == b or a!= b

Constraints

• if L(a) <p L(b) ⇒ L(a) <m L(b) 

• If L(a) <p S(b) ⇒ L(a) <m S(b)

• If S(a) <p S(b) ⇒ S(a) <m S(b)

• If S(a) <p L(b) ⇒ S(a) <m L(b) 

CS636 Swarnendu Biswas 22



Challenges in Implementing SC

• Is preserving program order on a per-location basis sufficient?
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Need for Write Atomicity
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Core C1

A = 1

Core C2

if (A == 1)
B = 1

Core C3

if (B == 1)
tmp = A

ti
m

e



Write Buffers with Bypassing
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Core 1 Core 2

S1: store flag1, 1
L1: load r1, flag2

S2: store flag2, 1
L2: load r2, flag1

flag1 = 0
flag2 = 0

shared bus

Core 1

write/store 
buffer

Core 2

write/store 
buffer

1. store flag1 2. store flag2

3. load flag2 4. load flag1



SC in Architecture with Caches

• Replication of data requires a cache coherence protocol 
• Several definitions of cache coherence protocols exist

• Propagating new values to multiple other caches is non-atomic
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Serialization of Writes
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Core 1 Core 2

A = 1
B = 1

A = 2
C = 1

Core 3

while (B != 1) {}
while (C != 1) {}
tmp1 = A

Core 4

while (B != 1) {}
while (C != 1) {}
tmp2 = A



Serialization of Writes
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Core 1 Core 2

A = 1
B = 1

A = 2
C = 1

Core 3

while (B != 1) {}
while (C != 1) {}
tmp1 = A

Core 4

while (B != 1) {}
while (C != 1) {}
tmp2 = A

Cache coherence must serialize writes to the same memory location

Writes to the same memory location must be seen in the same order by all



Cache Coherence

Single writer multiple readers (SWMR)

Memory updates are passed correctly, cached copies always contain the most 
recent data

Virtually a synonym for SC, but for a single memory location

Alternate definition based on relaxed ordering

• A write is eventually made visible to all processors

• Writes to the same location appear to be seen in the same order by all processors (serialization)

• SC - *all*

CS636 Swarnendu Biswas 32



Memory Consistency vs Cache Coherence

Memory Consistency

• Defines shared memory behavior

• Related to all shared-memory locations

• Policy on when new value is propagated to 
other cores

• Memory consistency implementations can 
use cache coherence as a “black box”

Cache Coherence

• Does not define shared memory behavior

• Specific to a single shared-memory location

• Propagate new value to other cached copies
• Invalidation-based or update-based
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End-to-end SC

Simple memory model that can be implemented both 
in hardware and in languages

Performance can take a hit

• Naive hardware

• Maintain program order - expensive for a write
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SC-Preserving Optimizations

• Redundant load 

• Forwarded load

• Dead store

• Redundant store

t = X; u = X;        t = X; u = t;

X = t; u = X;        X = t; u = t;

X = t; X = u;         X = u;

t = X; X = t;        t = X;
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Optimizations Forbidden in SC

• Loop invariant code motion

• Common sub-expression elimination

• …
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Original Optimized

L1: t = X*2
L2: u = Y
L3: v = X*2

L1: t = X*2
L2: u = Y
O3: v = t



Optimizations Forbidden in SC

• Loop invariant code motion

• Common sub-expression elimination

• …
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Original Optimized

L1: t = X*2
L2: u = Y
L3: v = X*2

Concurrent

C1: X = 1
C2: Y = 1

L1: t = X*2
L2: u = Y
O3: v = t

D. Marino et al. A Case for an SC-Preserving Compiler. PLDI’11.



Optimizations Forbidden in SC
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Original Optimized

L1: X = 1
L2: P = Q
L3: t = X

L1: X = 1
L2: P = Q
L3: t = 1

L1: X = 1
L2: P = Q
L3: X = 2

L1: ;
L2: P = Q
L3: X = 2

L1: t = X
L2: P = Q
L3: X = t

L1: t = X
L2: P = Q
L3: ;

Constant/copy 
propagation

Dead store

Redundant store



Implementing SC with Compiler Support

• Idea: Implement a compiler pass (e.g., LLVM) to deal with non-SC 
preserving optimizations
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L1: t = X*2
L2: u = Y
L3: v = X*2

L1: t = X*2
L2: u = Y
L3: v = t
C3: if (X modified since L1)
L3:   v = X*2

D. Marino et al. A Case for an SC-Preserving Compiler. PLDI’11.



SC Semantics

• SC does not guarantee data race freedom

• Not a strong memory model

Program semantics
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a++; buffer[index]++;



Questions

• How would you implement an RMW instruction with SC?

• Are memory models only relevant in systems with support for 
caches?

• Is memory consistency not needed in presence of cache coherence?

• Do memory models only impact hardware design?
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Hardware Memory Models
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Characterizing Hardware Memory Models

• Store → Load, Store → Store, …

• Applicable to pairs of operations with different 
addresses

Relax program order

• Read other core’s write early 

• Applicable to only cache-based systems
Relax write atomicity

• Read own write early
Relax both program order 

and write atomicity
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Possible Interleavings Under SC and TSO
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Total Store Order

Allows reordering stores to loads

Can read own write early, not other’s writes

Conjecture: widely-used x86 memory model is 
equivalent to TSO
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TSO Rules

• If L(a) <p L(b) ⇒ L(a) <m L(b) 

• If L(a) <p S(b) ⇒ L(a) <m S(b) 

• If S(a) <p S(b) ⇒ S(a) <m S(b) 

• If S(a) <p L(b) ⇒ S(a) <m L(b) /* Enables FIFO Write Buffer */

a == b or a != b

Every load gets its value from the last store before it 
to the same address
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Support for FENCE Operations in TSO

If L(a) <p FENCE ⇒ L(a) <m FENCE 

If S(a) <p FENCE ⇒ S(a) <m FENCE 

If FENCE <p FENCE ⇒ FENCE <m FENCE 

If FENCE <p L(a) ⇒ FENCE <m L(a) 

If FENCE <p S(a) ⇒ FENCE <m S(a) 

If S(a) <p FENCE ⇒ S(a) <m FENCE 

If FENCE <p L(a) ⇒ FENCE <m L(a) 
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Possible Outcomes with TSO
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Possible Outcomes with TSO
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RMW in TSO

Load of a RMW cannot be performed until earlier stores are 
performed (i.e., exited the write buffer)

• Effectively drains the write buffer

Load requires read–write coherence permissions, not just read 
permissions

To guarantee atomicity, the cache controller may not relinquish 
coherence permission to the block between the load and the store
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Relationship between SC and TSO

Correct? Correct?
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SC

TSO

TSO

SC



Partial Store Order (PSO)

• Allows reordering of store to loads and stores to stores

• Writes to different locations from the same processor can be 
pipelined or overlapped and are allowed to reach memory or other 
cached copies out of program order

• Can read own write early, not other’s writes
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Opportunities to Reorder Memory Operations
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Reorder Operations Within a Synchronization 
Block
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Optimization Opportunities

Non-FIFO coalescing write buffer

Support non-blocking reads

• Hide latency of reads

• Use lockup-free caches and speculative execution

Simpler support for speculation

• Need not compare addresses of loads to coherence requests

• For SC, need support to check whether the speculation is correct
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Relaxed Consistency Rules

If L(a) <p FENCE ⇒ L(a) <m FENCE

If S(a) <p FENCE ⇒ S(a) <m FENCE

If FENCE <p FENCE ⇒ FENCE <m FENCE

If FENCE <p L(a) ⇒ FENCE <m L(a)

If FENCE <p S(a) ⇒ FENCE <m S(a)
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Relaxed Consistency Rules

Maintain TSO rules for ordering two accesses to the same 
address only

• If L(a) <p L′(a) ⇒ L(a) <m L′(a)

• If L(a) <p S(a)  ⇒ L(a) <m S(a)

• If S(a) <p S′(a) ⇒ S(a) <m S′(a)

Every load gets its value from the last store before it to the 
same address
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Correct Implementation under Relaxed 
Consistency
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Is this code 
now correct?



Correct Implementation under Relaxed 
Consistency
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Relaxed Consistency Memory Models

Weak ordering

• Distinguishes between data and synchronization operations

• A synchronization operation is not issued until all previous 
operations are complete

• No operations are issued until the previous synchronization 
operation completes
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Correct Implementation under Relaxed 
Consistency
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Which fences are needed to ensure 
correct ordering and visibility 

between C1 and C2?



Relaxed Consistency Memory Models

Release consistency

• Distinguishes between acquire and release synchronization 
operations

• RCsc - maintains SC between synchronization operations

• Acquire → all, all → release, and sync → sync
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Relaxed Consistency Memory Models

Why should we 
use them? Performance

Why should we 
not use them? Complexity
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Hardware Memory Models: One Slide 
Summary
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Desirable Properties of a Memory Model

Hard to 
satisfy all 

three 
properties

• Programmability

• Performance 

• Portability Pros
• Intuitive

• Serializability of instructions

Cons

• No atomicity of regions

• Inhibits compiler 
transformations

• Almost all recent 
architectures violate SC
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Think of SC



Programming Language 
Memory Models
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Data-Race-Free-0 (DRF0) Model

• Conceptually similar to Weak Ordering

• Assumes no data races
• No guarantees for racy programs

• Allows many optimizations in the compiler and hardware



Language Memory Models

Developed much later

• Recent standardizations are largely driven by languages

Most are based on the DRF0 model 

Why do we need one?

• Isn’t the hardware memory model enough?
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C++ Memory Model

• Adaptation of the DRFO memory model

• SC for data race free programs

• C/C++ simply ignore data races
• No safety guarantees in the language
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Catch-Fire Semantics in C++

X* x = NULL;
bool done= false;

x = new X();
done = true;

if (done) {
x->func();

}

Thread T1 Thread T2



Catch-Fire Semantics in C++

X* x = NULL;
bool done= false;

x = new X();
done = true;

if (done) {
x->func();

}

Thread T1 Thread T2



Memory Operations in C++

Synchronization
• Lock, unlock, atomic load, atomic store, atomic 

RMW

Data • Load, Store
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Reordering of Memory Operations in C++

Compiler 
reordering 
allowed for 
M1 and M2 

M1 is a data operation and M2 is a read synchronization operation

M1 is write synchronization and M2 is data

M1 and M2 are both data with no synchronization between them

M1 is data and M2 is the write of a lock operation

M1 is unlock and M2 is either a read or write of a lock
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Writing Correct C++ Code

• Mutual exclusion of critical code blocks

• Mutex provides inter-thread synchronization
• Unlock() synchronizes with calls to lock() on the same mutex object
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std::mutex mtx;
{

mtx.lock();
// access shared data here
mtx.unlock();

}



Synchronize Using Locks
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std::mutex mtx; 
bool dataReady = false;

{
mtx.lock();
prepareData();
dataReady = true;
mtx.unlock();

}

{
mtx.lock();
if (dataReady) {

consumeData();
}
mtx.unlock();

}



Synchronize Using Locks
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std::mutex mtx; 
bool dataReady = false;

{
mtx.lock();
prepareData();
dataReady = true;
mtx.unlock();

}

bool b;
{
mtx.lock();
b = dataReady;
mtx.unlock();

}
if (b) {

consumeData();
}



Using Atomics from C++11

• “Data race free” by definition
• E.g., std::atomic<int>

• A store synchronizes with 
operations that load the stored 
value

• Similar to volatile in Java 

• C++ volatile is different!
• Does not establish inter-thread 

synchronization, not atomic 

• Can be part of a data race
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std::mutex mtx; 
std::atomic<bool> ready(false);

prepareData();
ready.store(true);

if (ready.load()) {
consumeData();

}

atm_var1.store(atm_var2.load());

reg_var1 = reg_var2;



Visibility and Ordering

Visibility

• When are the effects of one 
thread visible to another?

Ordering

• When can operations of any 
given thread appear out of order 
to another thread?
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Ensuring Visibility

• Writer thread releases a lock
• Flushes all writes from the thread’s working memory

• Reader thread acquires a lock
• Forces a (re)load of the values of the affected variables

• Atomic (C++)/volatile (Java)
• Values written are made visible immediately before any further memory 

operations
• Readers reload the value upon each access

• Thread join
• Parent thread is guaranteed to see the effects made by the child thread
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Memory Order of Atomics

• Specifies how regular, non-atomic 
memory accesses are to be ordered 
around an atomic operation

• Default is sequential consistency

atomic.h

enum memory_order {

memory_order_relaxed,

memory_order_consume,

memory_order_acquire,

memory_order_release,

memory_order_acq_rel,

memory_order_seq_cst

};
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Memory Model Synchronization Modes

• Producer thread creates data 

• Producer thread stores to an 
atomic 

• Consumer threads read from the 
atomic

• When the expected value is 
seen, data from the producer 
thread is complete and visible to 
the consumer thread
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The different memory model modes indicate how strong this data-
sharing bond is between threads

http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync



Memory Model Modes

• memory_order_seq_cst
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x = 0;
y = 0;

y = 1;
x.store(2);

if (x.load() == 2)
assert (y == 1)

Can this assert 
fail?



Memory Model Modes

• memory_order_seq_cst
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x = 0;
y = 0;

y.store(20);
x.store(10);

if (x.load() == 10)
assert (y.load() == 20);
y.store(10);

if (y.load() == 10)
assert (x.load() == 10)

Can these 
asserts fail?



Memory Model Modes

• memory_order_relaxed: no happens-before edges
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x = 0;
y = 0;

y.store(20, memory_order_relaxed);
x.store(10, memory_order_relaxed);

if (x.load(memory_order_relaxed) == 10)
assert (y.load(memory_order_relaxed) == 20);
y.store(30, memory_order_relaxed);

if (y.load(memory_order_relaxed) == 30)
assert (x.load(memory_order_relaxed) == 10)

Can these asserts fail?



Memory Model Modes

• memory_order_relaxed
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x = 0;
y = 0;

x.store(10, memory_order_relaxed);
x.store(20, memory_order_relaxed);

y = x.load(memory_order_relaxed);
z = x.load(memory_order_relaxed);
assert (y < z);

Can this assert 
fail?



Memory Model Modes

• memory_order_acquire and memory_order_release

CS636 Swarnendu Biswas 91

x = 0;
y = 0;

y.store(20, memory_order_release);

x.store(10, memory_order_release);

assert (y.load(memory_order_acquire) == 20 && x.load(memory_order_acquire) == 0);

assert (y.load(memory_order_acquire) == 0 && x.load(memory_order_acquire) == 10);

Can these asserts 
pass?



Memory Model Modes

• memory_order_acquire and memory_order_release
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x = 0;
y = 0;

y = 20;
x.store(10, memory_order_release);

if (x.load(memory_order_acquire) == 10) 
assert (y == 20);

Can this assert 
fail?



Memory Model Modes

• memory_order_consume
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x = 0;
y = 0;

n = 1;
m = 1;
p.store(&n, memory_order_release);

t = p.load(memory_order_acquire); 
assert (*t == 1 && m == 1);

t = p.load(memory_order_consume); 
assert (*t == 1 && m == 1);

Can these 
asserts fail? 



Happens-Before Memory Model (HBMM)

• Read operation a = rd(t, x, v) may return the value written by 
any write operation b = wr(t, x, v) provided
1. b does not happen after a, i.e., b ≺ 𝐻𝐵 a or b ≍ a
2. there is no intervening write c to x where b ≺ 𝐻𝐵 c ≺ 𝐻𝐵 a
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HBMM
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y = 1;
r1 = x; 

x = 1;
r2 = y;

x = 0;
y = 0;

assert r1 != 0 || r2 != 0

r1 = x; 
y = 1;

r2 = y;
x = 1;

assert r1 == 0 || r2 == 0 Can these 
asserts fail? 



HBMM
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r = x;
y = 1;
assert (r == 0);

while (y == 0) {}
x = 1;

x = 0;
y = 0;

Will the assertion 
pass or fail?



HBMM
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x = 10; if (x != 0)
r2 = r1 / x;

x = 0;

Can anything go 
wrong?



HBMM

• Potential for out-of-thin-air values
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x = y; y = x;

x = 0;
y = 0;



HBMM

• DRF0 is not strictly stronger than HBMM

DRF0 allows arbitrary behavior for racy 
executions

• HBMM is not strictly stronger than DRF0

HBMM does not guarantee SC for DRF programs
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DRF0 vs HBMM 
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r1 = x;
if (r1 == 1) 

y = 1;

r2 = y;
if (r2 == 1)
x = 1;

x = 0;
y = 0;

assert r1 == 0 && r2 == 0

Is there a data race 
on x and y?



Java Memory Model (JMM)

• First high-level language to incorporate a memory model

• Provides memory- and type-safety, so has to define some semantics 
for data races
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Outcomes Possible with JMM

• Racy Initialization
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obj = new Circle(); if (obj != null)
obj.draw()

obj = null
x = 0;
y = 0;

Can there be a 
NPE with JMM?



Outcomes Possible with Java
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x = 0;
y = 0;

r1 = x;
y = 1;

r2 = y;
x = 1;

assert r1 == 0 || r2 == 0

y = 1;
r1 = x;

x = 1;
r2 = y;

assert r1 != 0 || r2 != 0

assert r1 == 0 || r2 == 0

assert r1 != 0 || r2 != 0

Can these 
asserts fail? 



Outcomes Not Possible with Java
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r1 = x;
y = r1;

r2 = y;
x = r2;

x = 0;
y = 0;

assert r1 != 42

JMM is strictly stronger than DRF0 and HBMM



JVMs do not comply with the JMM!!!
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r1 = x;
y = r1;

r2 = y;
if (r2 == 1) {

r3 = y;
x = r3;

} else {
x = 1;

}

x = 0;
y = 0;

assert r2 == 0 Can this assert 
fail under HBMM 

and JMM? 



Lessons Learnt

SC for DRF is the minimum baseline

• Make sure the program is free of data races

• System guarantees SC execution

Specifying semantics for racy programs is hard

Simple optimizations may introduce unintended consequences
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